
HEAT AND MASS TRANSFER IN A TWO-COMPONENT
DEVELOPED TURBULENT GAS-VAPOR-DROPLET FLOW

V. I. Terekhov,a M. A. Pakhomov,a and
A. V. Chichindaevb

UDC 536.24

A calculation model is developed and a numerical study is made of the heat and mass transfer char-
acteristics in a turbulent gas-vapor-droplet flow moving in a round tube. The model takes into ac-
count the evaporation of droplets, the diffusion of vapor into air, and the acceleration of a carrier
flow. Distributions of the parameters of the two-phase flow are obtained with respect to the tube
radius for different initial concentrations of the gas phase. Heat- and mass-transfer calculations are
compared to the experimental and numerical works. On the whole, the evaporation of the droplets in
the vapor-gas flow leads to the intensification of heat transfer as compared to a one-component
vapor-droplet flow and single-phase flow of vapor.

A great number of works are devoted to theoretical investigation of heat transfer in two-phase vapor-
and gas-droplet flows [1−9]. In those works, laminar and turbulent modes of vapor-droplet flows are most
fully studied numerically [5−7]. However, for practical applications the data on a turbulent flow of gas-vapor-
droplet mixtures in channels are of importance. Investigations in this field are scarce [7−9].

In [8], based on the asymptotic theory of a turbulent boundary layer, an approximate method of cal-
culation of heat transfer in the supercritical region of a disperse flow is developed that fairly fits the experi-
mental data for smooth and rough surfaces. A similar approach but for the polydisperse composition of
droplets was used in [9] for obtaining the relative law of heat transfer and a logarithmic temperature distri-
bution in the boundary layer of a vapor-droplet flow. However, a large number of the assumptions adopted
in these works require verification and accordingly a solution of the problem in a more complete form.

The turbulent heat transfer in a vapor-droplet flow is investigated numerically in [6, 7]. The formula-
tion of the problem as a whole is similar to the well-tested approach for the laminar mode of flow, while the
turbulent thermal conductivities and the velocities are adopted in accordance with the Deissler model for a
single-phase flow [10].

It should be noted that in the majority of the theoretical investigations performed, heat and mass
transfer was studied in one-component vapor-droplet flows. The present work is devoted to further develop-
ment of the calculated studies of the heat transfer and a parametric analysis of the process in turbulent two-
component gas-vapor-droplet flows. The presence of the second component in a gas phase (for instance, of
air in the mixture with steam) makes the solution of the problem substantially more complicated, since it
necessitates simultaneous solution of the equations of energy and diffusion for a vapor-gas mixture. These
data are also of interest for practical applications in calculations of two-phase cooling systems for units of
power equipment and for facilities of chemical technologies.

Formulation of the Problem. In the present work, consideration is given to the two-dimensional sta-
bilized steady-state flow of a two-phase gas-vapor-droplet flow in a tube with allowance for evaporation of
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liquid droplets. Such a mechanism of the disperse flow mode was adopted in the majority of studies of heat
transfer in vapor-droplet flows [6]; we have also employed this approach in the present work. It was assumed
that conductive heat transfer caused by direct contact of a droplet with a wall was negligible as compared to
the contribution of the convective heat transfer between the vapor-gas flow and the wall; the radiative heat
transfer also was not taken into account. In the vapor-gas flow, droplets serve as a distributed heat sink and
a vapor source. The mixture gives off heat to liquid droplets, while the vapor generated is heated to the
temperature of the main flow and diffuses into the region with a lower vapor content.

In the inlet cross section of the tube, the temperature distribution of the vapor and the droplets is
uniform and the vapor can be superheated relative to the saturation temperature at its present partial pressure.
The temperature of a particle over its diameter was also assumed to be constant, since according to the esti-
mates made [11] the Biot number is Bi = α0dp1

 ⁄ λliq < 0.1, where α0 is the heat-transfer coefficient of a
nonevaporating particle.

All particles at the inlet to the tube are of the same size, and their number concentration per unit
volume is also constant; moreover, the latter condition is fulfilled for the entire region of the flow. Heat is
transferred from the vapor-gas mixture to the droplets only by conduction. The presence of the droplets does
not influence the radial distribution of the flow velocity and of the turbulent thermal conductivity.

Consideration is given to two types of boundary conditions on the inner surface of the tube, namely,
the regimes with a constant specific heat flux on the wall (qw = const) and with a constant wall temperature
(Tw = const). In the present work, we have mainly investigated the case qw = const.

With account for the assumptions made, the heat transfer in a gas-vapor-droplet flow for the axisym-
metric flow pattern is described by the system of the equations of energy [12]
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and of diffusion for a vapor-gas mixture [12]
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here D(r) is the coefficient of turbulent diffusion of vapor into air, whose value, similarly to the turbulent
thermal conductivity, is not constant over the tube radius.

The equations of energy and diffusion have source (sink) terms, which describe heat removal from a
gas phase and delivery of vapor mass due to particle evaporation. They are represented by the second terms
on the right-hand side of Eqs. (1) and (2). Moreover, the equation of energy (1) contains a term on the right-
hand side that is attributable to diffusional heat transfer in the vapor-gas phase.

Relations (1) and (2) are supplemented by the equation of heat transfer at the droplet-vapor-gas mix-
ture interface:
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and by the equation of conservation of vapor mass on the evaporating surface of a droplet:

js = js (Kv)s − ρvDv 
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The quantity α in (3), according to the data of [13], is related to the heat transfer coefficient α0 by the
following relation:
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α = 
α0

1 + Cpm (T − Tliq) ⁄ L
 . (5)

The coefficient of heat transfer to finely disperse nonevaporating particles in the absence of a phase slip is
described by the relation Nu = α0dp

 ⁄ λm = 2 and, consequently, α0 = 2λm
 ⁄ dp.

Considering that the diffusional Stanton number Std is determined as

Std = − ρvDv 
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  ⁄ ρmU [(Kv)s − Kv] , (6)

we can, with account for (7), write the equation of mass conservation (4):

js = Std ρmUb1d , (7)

where

b1d = 
(Kv)s − Kv

1 − (Kv)s
 .

(8)

For finely disperse particles in the case of the absence of a phase slip, the mass transfer between the droplets
and the mixture is described by the known relations [11]: Sh = βdp

 ⁄ Dv = 2 and Std = Sh/RepSc = 2/RepSc.
Then Eq. (7) is transformed finally to the form

js = 
2Dv ρmb1d

dp
 , (9)

and the penetrability parameter b1d is determined from Eq. (8) with the use of the saturation curve.
The equation of material balance for the binary vapor-air mixture is as follows:

Kv + Ka = 1 . (10)

For the ternary vapor−gas−liquid mixture it is written as

Mv + Ma + Mliq = 1 . (11)

The relation between the mass concentrations Ki and Mi can be written in the following form:

Kv = 
Mv

Mv + Ma
 ;   Ka = 

Ma

Mv + Ma
 = 1 − Kv . (12)

The expression for calculating the running diameter of a droplet dp is

dp = 
3√6Cliq ρm

πρliqn
 . (13)

Thus, relations (1) through (13) represent a close system of equations that describes the processes of
heat and mass transfer in a droplet flow and allows calculation of all the sought quantities, namely, the dis-
tributions of the temperatures, the enthalpies, the phase components, and the components of the vapor-gas
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mixture, and makes it possible to track the dynamics of change in the particle sizes and to analyze the degree
of the intensification of heat transfer due to the evaporation processes.

Boundary conditions for the temperatures and the concentration of the components of the vapor-gas
mixture are written in the following form:
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The temperature of the vapor-gas mixture and of the particles at the inlet as well as the concentra-
tions of the vapor, the gas, and the droplets were assumed to be constant over the cross section:

T = T1 ,   Tliq = Tliq1 ,   dp = dp1 ,   Kv = Kv1 ,   Ka = 1 − Kv1 ,   Mliq = Mliq1   at   x = 0 . (16)

The local Nusselt number Nu for a constant specific flux on the wall was determined from the wall-
temperature gradient and the mass-mean value in the vapor-gas mixture

Nu = 
2qwR
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__

)
 , (17)

where T
__

 was determined by integration of the temperature field over the tube cross section:
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Similarly, the mass-mean concentrations of the components of the gas and liquid phases were calcu-
lated.

In the case of intense evaporation, the flow rate of the gas phase due to vaporization increases as the
flow advances in the tube. Here, it was assumed that the relative velocity profile remained constant but its
mass-mean value changed in accordance with the balance relation
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In the calculations, we assumed that the diameter of the particles was constant with respect to the
radius. Such an assumption is justified by the fact that in turbulent flow owing to the pulsation motion the
droplets undergo intense mixing over the radius. As a result, the size of particles in the liquid is a function
of only the longitudinal coordinate.

For the carrier phase, use was made of the two-layer turbulence model of Deissler [10] modified by
A. Rane and S. Yao [6, 7] for a two-phase flow. The calculational formulas for the turbulent thermal conduc-
tivity and for the velocity profiles are given in [7]. The choice of this model was largely attributable to the
necessity of carrying out a comparative analysis of calculation results for a simpler case of the turbulent
vapor-droplet flow. In the calculations, we also assumed that the turbulent Prandtl and Schmidt numbers were
equal: Prt = Sct = 0.9 [14]. The Lewis number was Le = 1.

The thermophysical properties of the components were calculated using the formulas from [15].
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Algorithm of the Calculations and Verification of Reliability of the Numerical Model. Approxi-
mation of the differential equations was carried out by implicit finite-difference analogs with the second order
of accuracy in the transverse coordinate and with the first order of accuracy in the longitudinal one. The
obtained system of difference equations was solved by the method of elimination by the Thomas algorithm
[16]. The tube length was 2 m; its inside diameter was 0.02 m. In the calculations, we used a grid variable
relative to the transverse coordinate; in the near-wall zone, where the calculated parameters experience more
abrupt changes, the grid was more bunched than in the turbulent core of the flow. In the laminar sublayer the
number of points was 10, while in the flow core it was 50. Since the fundamental equations of the mathe-
matical model were nonlinear and conjugate, in obtaining a convergent solution we performed iterations at
each calculated point.

In the absence of the liquid phase and vapor, the numerical solution, with an error of no more than
3%, corresponded to the regularities of heat transfer in a stabilized one-phase flow [12]. For the sake of
comparison, in the case of the two-phase flow pattern we used the data of a numerical analysis from [6]. The
calculations according to the present model were found to be in good agreement with the numerical calcula-
tions for a stabilized vapor-droplet flow [6].

Calculation Results and Discussion. Comparison with the Experimental Data. Below we present
the results of our investigation of the influence of the parameters of a two-phase flow on heat and mass
transfer in a tube. The emphasis has been on studying the effect of the concentration of the gas on a change
in the flow characteristics and on the intensification of heat transfer.

All the calculations were carried out for a steam-air mixture at atmospheric pressure with the liquid
water particles being present in it. The initial parameters ranged as follows: the temperature of the vapor-gas
mixture at the inlet from 373 to 450 K; the flow Reynolds number from 5⋅103 to 1⋅106; the droplet diameter
from 1 to 100 µm, their mass concentration from 0 to 0.1, and the concentration of air from 0 to 0.8. As a
result of the calculations, we determined the temperatures of the droplets and of the vapor-air mixture, the
mass concentrations of all the components, the droplet diameter, and heat transfer to the tube surface.

Calculation results in the form of the dimensionless temperature profiles Θ = (T − Tw)/(Tax − Tw) over
the tube cross section for different mass concentrations of air are presented in Fig. 1. The fixed quantities in
these calculations were the Reynolds number determined from the parameters at the inlet and the concentra-
tion of the liquid phase. Curve 1 in this figure represents the temperature profile for the purely single-phase

Fig. 1. Influence of the air concentration on the temperature profile of
the air-vapor-droplet mixture (x/(2R) = 20, dp1 = 30 µm, Re = 104, qw =
1 kW/m2, T1 = 373 K, Tliq1 = 283 K, Mliq1 = 0.1): 1) Cv1; 2) Ca1 = 0
(Cv1 = 0.9); 3) 0.01; 4) 0.1; 5) 0.2; 6) 0.5; 7) Θ = (1 − r ⁄ R)

1⁄7.
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mode of the vapor flow Cv1 = 1, while curve 2 pertains to the vapor-droplet flow in the absence of air in it
Ca1 = 0. Curve 7, which practically coincides with the profile for the single-phase flow, reflects calculation
by the analytical dependence for a single-phase developed turbulent flow [12]. As is seen in Fig. 1, the in-
crease in the content of air at the inlet results in a more filled temperature profile, which causes intensifica-
tion of the processes of heat transfer to the tube surface. A similar picture, as the calculated studies have
revealed, also occurs for the other flow rate and concentration relations at the tube inlet.

The larger filling of the temperature profile is attributable, first of all, to more active evaporation
processes between the droplets and the vapor-gas mixture with a high content of air. Indeed, as the air con-
centration increases, the diffusional transfer of vapor from the surface of particles to the surrounding flow
increases, thus causing an increase in the evaporation rate of the droplets. These conclusions are confirmed
by the data in Fig. 2a that provides the results of calculation of a change in the droplet sizes over the tube
length with variation of the air content. According to these data, droplets evaporate more intensely with in-
crease in the air content. In this case, the length of the two-phase zone decreases.

The distinctive features indicated above are reflected on the parameter of intensification of heat trans-
fer Nu/Nuv, (Nuv is the Nusselt number in the single-phase vapor flow at the same Reynolds number). Re-
sults of similar calculations are presented in Fig. 2b. For the one-component vapor-droplet flow (Ca1 = 0,
curve 1) heat transfer displays the lowest intensification. With increase in the air content, the intensity of heat
transfer markedly increases but the length of the zone of the two-phase flow markedly decreases along the
channel.

The influence of the initial velocity of the carrier flow on Nu/Nuv is shown in Fig. 3. As the
Reynolds number increases, heat transfer markedly increases. An increase in the droplet size results in the
deterioration of heat transfer. For fine particles with dp1 < 0.1−0.5 µm, the degree of intensification becomes
a fixed quantity, which is due to passage to the equilibrium mode of evaporation of the liquid droplets, in
which the vapor-gas mixture is in the saturated state.

It should be emphasized that the data in Fig. 3 are largely of a demonstrative nature since the process
under consideration is a multiparametric one and accordingly the degree of intensification is a function of the
large number of thermodynamic parameters. A detailed analysis of their influence is beyond the scope of the
present work.

Comparison of the calculated results with the available experimental data turned out to be difficult
because of the absence of experimental data on heat and mass transfer in a stabilized disperse flow. We em-
ployed the experimental data of [2], which is concerned with an investigation of heat and mass transfer in a
turbulent gas-vapor-droplet flow. The tube diameter was 12.95 mm, its length was 889 mm, and the Reynolds

Fig. 2. Change in the droplet diameter (a) and heat transfer (b) in the
gas-vapor-droplet flow (the conditions correspond to the data in Fig. 1):
1) Ca1 = 0; 2) 0.01; 3) 0.1; 4) 0.2; 5) 0.5.
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number based on the tube diameter was Re = 104−106. The flow pressures ranged from 1.07 to 1.22 bars. The
specific heat flux over the wall was 6.4−36.2 kW/m2, and the initial size of the droplets ranged from 8.6 to
23.6 µm. In the experiment, we measured the wall temperatures in the single-phase flow of air and for the
disperse gas-droplet flow of the mixture along the heat-transfer channel. From these values the intensification
of heat transfer in the gas-droplet flow was calculated and compared to the single-phase gas flow.

Results of a comparison of the experimental and calculated intensifications of heat transfer are pre-
sented in Fig. 4, where α ⁄ αa is the intensification of heat transfer and αa is the heat-transfer coefficient in
the single-phase gas flow.

 It follows from the figure that the calculation according to the present model is in fair agreement
with the experimental results. The calculated and experimental values of the intensification of heat transfer
are characterized by a monotonic decrease along the channel. A more pronounced discrepancy in the calcula-
tion results and experimental data at the beginning of the channel is attributed to the influence of the initial
portion, on which a dynamic boundary layer develops in experiments. In this zone, the discrepancy of the
calculated and experimental results lies in the range 20−25%. On the basic part of the channel the discrepancy
does not exceed 10%.

Thus, the developed model, as a whole, qualitatively and quantitatively describes heat and mass trans-
fer in a two-component, two-phase flow in the presence of phase changes. At the same time, it cannot claim
completeness and adequacy in describing all the complex features of the occurrence of simultaneous dynamic
and heat- and mass-transfer processes; for this, more detailed experimental and numerical studies are needed.

This work was carried out under grant 98-02-17898 of the Russian Fund for Fundamental Research
and under the Federal target-oriented program "State Assistance to Integration of Higher Education and Fun-
damental Science," project No. 330.

NOTATION

b1d, diffusion parameter of vapor blast from the evaporating particle; Cp, specific heat at constant

pressure, J/(kg⋅K); dp1 and dp, initial and running particle diameter, respectively, m; D(r), coefficient of tur-

Fig. 3. Intensification of heat transfer as a function of the Reynolds num-
ber at the channel inlet (x /(2R) = 20, qw = 1 kW/m2, T1 = 373 K, Tliq1

= 283 K, Mliq1 = 0.1, Ma1 = 0.1): 1) Re = 1.8⋅103; 2) 104; 3) 5⋅104; 4)
105. dp1 µm.

Fig. 4. Comparisons of the experimental and calculated data (T1 = 303
K, Mliq1 = 0.01, Re = 2.3⋅104, and dp1 = 23 µm; solid lines, calculation;
points, experiment [2]): 1) 6.4 kW/m2; 2) 8.34; 3) 14.53.
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bulent diffusion of vapor into air, m2/sec; Dv, coefficient of molecular diffusion of vapor into air, m2/sec; js,

transverse vapor flow over the surface of the evaporating droplet, kg/(m2⋅sec); Kv, concentration of the vapor
in the binary vapor-air mixture; (Kv)s, mass concentration of the vapor over the particle surface corresponding
to the saturation parameters at the droplet temperature Tliq; M, mass concentration of the components in the
ternary gas-vapor-droplet flow; L, latent heat of the phase transition, J/kg; n, number concentration of the

liquid droplets in the tube, m−3; T, temperature, K; T
__

, mass-mean temperature, K; qw, specific heat flux over
the wall, W/m2; U

__
, mean-flow-rate velocity of the flow in the running cross section, m/sec; U(r), relative

radial profile of the flow velocity; U, flow velocity at the calculated point, m/sec; r, transverse coordinate, m;
x, longitudinal coordinate, m; R, tube radius, m; α0, heat-transfer coefficient of the nonevaporating particle,

W/(m2⋅K); α, heat-transfer coefficient in the evaporating droplet, W/(m2⋅K); β, mass-transfer coefficient,

m/sec; λ, thermal conductivity, W/(m⋅K); λ(r), turbulent thermal conductivity, W/(m⋅K); ρ, density, kg/m3;

ν, kinematic viscosity, m2/sec; τ, time, sec; a, thermal diffusivity, m2/sec. Similarity numbers: Bi =

α0dp1
 ⁄ λliq, Biot number; Re = U

__
2R ⁄ ν and Rep = U

__
dp

 ⁄ ν, Reynolds numbers for the tube and for the droplet,

respectively; Std = −ρvDv




∂Kv

∂r



 s

 ⁄ ρmU[(Kv)s − Kv], diffusional Stanton number; Sc = ν ⁄ D, Schmidt number;

Sh = βdp
 ⁄ Dv, Sherwood number; Pr = ν ⁄ a, Prandtl number; Le = Pr/Sc, Lewis number; Nu =

2qwR ⁄ λm(Tw − T), Nusselt number. Subscripts and superscripts: 0, nonevaporating particle; 1, initial parame-
ter; ax, quantity on the tube axis; d, diffusional parameter; w, wall; liq, liquid phase; p, liquid droplet; a, air;
v, vapor; s, parameter under saturation conditions, droplet surface; m, vapor-air mixture; t,  turbulent.
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